
ePubWU Institutional Repository

Manfred M. Fischer and Yee Leung

A Genetic Algorithm Based Evolutionary Computational Neural Network for
Modelling Spatial Interaction Data

Paper

Original Citation:
Fischer, Manfred M. and Leung, Yee (1998) A Genetic Algorithm Based Evolutionary Computational
Neural Network for Modelling Spatial Interaction Data. Discussion Papers of the Institute for
Economic Geography and GIScience, 61/98. WU Vienna University of Economics and Business,
Vienna.

This version is available at: http://epub.wu.ac.at/4151/
Available in ePubWU: May 2014

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

http://epub.wu.ac.at/4151/
http://epub.wu.ac.at/

Abteilung für Theoretische und Angewandte Wirtschafts- und Sozialgeographie
Institut für Wirtschafts- und Sozialgeographie

Wirtschaftsuniversität Wien

Vorstand: o.Univ.Prof. Dr. Manfred M. Fischer
A - 1090 Wien, Augasse 2-6, Tel. +43/1/31336-4836

Redaktion: Univ.Ass. Dr. Petra Staufer

WSG 61/98

A Genetic Algorithm Based Evolutionary

Computational Neural Network for

Modelling Spatial Interaction Data

Manfred M. Fischer and Yee Leung

WSG-Discussion Paper 61

February 1998

Gedruckt mit Unterstützung
des Bundesministerium

für Wissenschaft und Verkehr
in Wien

WSG Discussion Papers are interim
reports presenting work in progress

and papers which have been submitted
for publication elsewhere.

ISBN 3 85037 072 0

3

Abstract

Building a feedforward computational neural network model (CNN) involves two distinct
tasks: determination of the network topology and weight estimation. The specification of a
problem adequate network topology is a key issue and the primary focus of this contribution.
Up to now, this issue has been either completely neglected in spatial application domains, or
tackled by search heuristics (see Fischer and Gopal 1994). With the view of modelling
interactions over geographic space, this paper considers this problem as a global
optimization problem and proposes a novel approach that embeds backpropagation learning
into the evolutionary paradigm of genetic algorithms. This is accomplished by interweaving a
genetic search for finding an optimal CNN topology with gradient-based backpropagation
learning for determining the network parameters. Thus, the model builder will be relieved of
the burden of identifying appropriate CNN-topologies that will allow a problem to be solved
with simple, but powerful learning mechanisms, such as backpropagation of gradient descent
errors. The approach has been applied to the family of three inputs, single hidden layer,
single output feedforward CNN models using interregional telecommunication traffic data for
Austria, to illustrate its performance and to evaluate its robustness.

1. Introduction

The recent emergence of computational intelligence technologies such as artificial life,
evolutionary computation and neural networks has been accomplished by a virtual explosion of
research, spanning a range of disciplines, perhaps wider than any other contemporary
intellectual endeavour. Researchers from such diverse fields such as neuroscience, computer
science, cognitive science, physics, engineering, statistics, mathematics, computational
economics and GeoComputation are daily making substantial contributions to the
understanding, development and applications of computational adaptive systems.

With a few exceptions (notably Openshaw 1988, 1993, 1997, Leung 1994, 1997, Fischer
1997, Fischer et al. 1997, Fischer and Gopal 1994, Gopal and Fischer 1996, Openshaw and
Openshaw 1997, Nijkamp et al. 1996) geographers and regional scientists have been rather
slow in realizing the potential of these novel technologies for spatial modelling. Recently,
neural spatial interaction models with three inputs and a single output have been established as
a powerful class of universal function approximators for spatial interaction flow data (see
Fischer and Gopal 1994).

One of the open issues in neural spatial interaction modelling includes the model choice
problem, also termed the problem of determining an appropriate network topology. It consists

4

of optimizing the complexity of the neural network model in order to achieve the best
generalization. Considerable insight into this phenomenon can be obtained by introducing the
concept of the bias-variance trade-off, in which the generalization error is disaggregated into
the sum of the squared bias plus the variance. A model that is too simple, or too inflexibe, will
have a large bias, while one that has too much flexibility in relation to the particular data set
will have a large variance. The best generalization is obtained when the best compromise
between the conflicting requirements of small bias and small variance are achieved. In order to
find the optimal balance between the bias and the variance it is necessary to control the
effective complexity of the model, complexity measured in terms of the number of adaptive
parameters (Bishop 1995).

Various techniques have been developed in the neural network literature to control the
effective complexity of neural network models, in most cases as part of the network training
process itself. The most widely used approach is to train a set of model candidates and choose
that one which gives the best value for a generalization performance criterion. This approach
requires significant computational effort and yet it only searches a restricted class of models.
An obvious drawback of such an approach is its trial and error nature. An alternative and a
more principled approach to the problem utilized by Fischer et al. (1997) is to start with an
‘oversized’ model and gradually remove either parameter weights or complete processing units
in order to arrive at a suitable model. This technique is known as pruning technique. One
difficulty with such a technique is associated with the threshold definitions that are used to
decide which adaptive parameters or processing units are important.

Yet another way, to optimize the model complexity for a given training data set is the
procedure of stopped or cross-validation that had been used by Fischer and Gopal (1994).
Here, an overparameterized model is trained until the error on further independant data, called
validation data set, deteriorates, then training is stopped. This contrasts to the other above
approaches since model choice does not require convergence of the training process. The
training process is used to perform a directed search of the weight space for a model that does
not overfit the data and, thus, demonstrates generalization performance. This approach has its
shortcomings too. First, it might be hard in practice to identify when to stop training. Second,
the results may depend on the specific training set-validation set pair chosen. Third, the model
which has the best performance on the validation set might not be the one with the best
performance on the test set.

Though these approaches address the problem of neural network model choice, they
investigate only restricted topological subsets rather than the complete class of computational
neural network (CNN) architectures. As a consequence, these techniques tend to force a task
into an assumed architectural class rather than fitting an appropriate architecture to the task. In
order to circumvent this deficiency, we suggest genetic algorithms, a rich class of stochastic

5

global search methods, for determining optimal network topologies. Genetic search on the
space of CNN topologies relieves the model builder of the burden of identifying the network
structure (topology) that would otherwise have to be done by hand using trial and error.
Standard genetic algorithms, with no tricks to speed up convergence, are very robust and
effective for global search, but very slow in fine-tuning (i.e. converging) a good solution once
a promising region of the search space has been identified (Maniezzo 1994). This motivates
one to marry the advantages of genetic evolution and gradient-based (local) learning. Genetic
algorithms can be used to provide a model of evolution of the topology of CNNs, and
supervised learning may be utilized to provide simple, but powerful learning mechanisms.
Backpropagation learning appears to be a natural local search integration for genetic evolution,
in the case of CNN optimization.

The remainder of this paper is organized as follows. Section 2 describes the basic features of
neural spatial interaction models along with gradient-based backpropagation learning as
standard approach to parameter estimation. Section 3 introduces the fundamentals of genetic
algorithms and concludes with a brief overview of how they can be applied to network
modelling. Section 4 presents the hybrid system, called GENNET (standing for GENetic
evolution of computational neural NETworks) that interweaves a genetic search for an
appropriate network topology (in the space of CNN topologies) with gradient-based
backpropagation learning (in the weight space) for determining the network parameters.
Modelling spatial interaction data has special significance in the historical development of
mathematical modelling in geography and regional science, the testing ground for new
approaches. The testbed for the evaluation uses interregional telecommunication traffic data
from Austria because they are known to pose a difficult problem to neural networks using
backpropagation learning due to multiple local minima and there is a CNN benchmark available
(see Fischer and Gopal 1994, Gopal and Fischer 1996). Section 5 reports on a set of
experimental tests carried out to identify an optimal parameter setting and to evaluate the
robustness of the approach suggested with respect to its parameters, using a measure which
provides an appropriate compromise between network complexity and in-sample - and out-of-
sample performances. Section 6 summarizes the results achieved, and outlines directions for
future research.

2. Neural Spatial Interaction Models

Neural spatial interaction models are termed neural in the sense that they have been inspired by
neuroscience. But they are more closely related to conventional spatial interaction models of
the gravity type than they are to neurobiological models. They are special cases of general
feedforward neural network models. Rigorous mathematical proofs for the universality of such

6

models employing continuous sigmoid type transfer functions (see among others Hornik et al.
1989) establish the three input-single output-single hidden layer neural spatial interaction
models developed by Fischer and Gopal (1994) as a powerful class of universal approximators
for spatial interaction flow data.

Such models may be viewed as a particular type of an input-output model. Given a three-
dimensional input vector x that represents measures of origin propulsiveness, destination
attractiveness and spatial separation, the neural model produces a one-dimensional output
vector y, say

y = Φ (x,w) = ψ β j
j=0

J

∑ ϕ j α jn
n= 0

3

∑ xn

 (1)

representing spatial interaction flows from regions of origin to regions of destination. J denotes
the number of hidden units, ϕ j(.) (j=1, ..., J) and ψ (.) are transfer (activation) functions of,
respectively, the j-th hidden and the output unit. The symbol w represents a (5J+1)-
dimensional vector of all the α- and β-network weights (parameters). x0 represents a bias
signal equal to 1. The transfer functions ϕ j(.) and ψ (.) are assumed to be differentiable, non-
linear; moreover, ϕ j(.) is generally, but not necessarily assumed to be identical for j=1, ..., J.

Each neural spatial interaction model Φ (x,w) can be represented in terms of a network diagram
(see Fig. 1) such that there is a one-to-one correspondence between components of Φ and the
elements of the diagram. Equally, any topology of a three layer network diagram with three
inputs and a single output, provided it is feedforward, can be translated into the corresponding
neural spatial interaction model. We can, thus, consider model choice in terms of topology
selection [i.e., choice of the number of hidden units] and specification of the transfer functions
ψ and ϕ j (j=1, ..., J).

When approximating the analytically unknown input-output function F: ℜ 3→ ℜ from available
samples (xk, yk) with F(xk)=yk), we have to determine the structure [i.e., the choice of ψ and
ϕ j with j=1, ..., J, and the network topology] of the spatial interaction model Φ first, and from
that finding an optimal set wopt of adaptive parameters. Obviously, these two processes are
intertwined. If a good set of transfer functions can be found, the success of which depends on
the particular real world problem, then the task of weight learning [parameter estimation]
generally becomes easier to perform.

In all the models under investigation, the hidden unit and output unit transfer functions [ϕ j with
j=1, ..., J and ψ] are chosen to be identical and the logistic function. This specification of the
general model class Φ leads to neural spatial interaction models, say Φ L, of the following type

7

y = Φ L (x, w) = 1 + exp − λ β j 1 + exp − λ α jnxn
n= 0

3

∑

 j= 0

J

∑
− 1

− 1

(2)

with values λ close to unity.

M
ea

su
re

 o
f O

rig
in

Pr

op
ul

siv
en

es
s

M
ea

su
re

 o
f D

es
tin

at
io

n
A

ttr
ac

tiv
en

es
s

M
ea

su
re

 o
f S

pa
tia

l
Se

pa
ra

tio
n

B
ila

te
ra

l S
pa

tia
l

In
te

ra
ct

io
n

Fl
ow

x1 x2 x3

β-Weights

α-Weights

Output

Hidden Units

Input

Fig. 1 Representation of the general class of neural spatial interaction models defined by
equation (1) [biases not shown]

Thus, the problem of determining the model structure is reduced to determine the network
topology of the model [i.e., the number J of hidden units]. Hornik et al. (1989) have
demonstrated with rigorous mathematical proofs that network output functions such as Φ L can
provide an accurate approximation to any function F likely to be encountered, provided that J
is sufficiently large. This universal approximation property establishes the attractivity of the
spatial interaction models considered in this contribution.

Without loss of generality, we assume Φ L to have a fixed topology, i.e. J is predetermined.
Then, the role of learning is to find suitable values for network weights w of this model such
that the underlying input-output relationship F: ℜ 3→ ℜ represented by the training set (xk, yk)

8

k=1, 2, ...; i.e., F(xk)=yk, is approximated or learned, where k indexes the training instance. yk

is a 1-dimensional vector representing the desired network output [i.e. the spatial interaction
flows] upon presentation of xk [i.e. measures of propulsiveness, destination attractiveness and
spatial separation]. Since the learning here is supervised (i.e., target outputs yk are available),
an error (objective, performance) function may be defined to measure the degree of
approximation for any given setting of the network’s weights. A commonly used, but by no
means the only error function is the least squares criterion which is defined for on-line learning
as follows

E(w) = 1
2 yk − Φ x k , w()()

(X k , Y k)
∑ 2

. (3)

Once a suitable error function is formulated, learning can be viewed as an optimization
process. That is, the error function serves as a criterion function, and the learning algorithm
seeks to minimize the criterion function such as (3) over the space of possible weight settings.
Using (3) an optimal parameter set wopt may be chosen as:

wopt: E(wopt) = min
W

 E(w). (4)

The most prominent learning algorithm which has been proposed in the neural network
literature to solve this minimization problem is backpropagation (BP) learning (Rumelhart,
Hinton and Williams 1986) combined with the gradient descent technique which allows for
efficient updating of the parameters due to the feedforward architecture of the spatial
interaction models.

In its standard version backpropagation learning starts with an initial set of random weights w0

and then updates them by

wτ = wτ-1 + η ∇Φ (xk, wτ-1) (yk - Φ (xk, wτ-1)) k=1, 2, ..., K (5)

where w is the (5J+1)-dimensional vector of network weights to be learned; its current
estimate at time τ-1 is denoted by wτ-1; (xk, yk) is the training pattern presented at time k; Φ is
the network function; η is a fixed step size (the so-called learning rate), ∇Φ is the gradient (the
vector containing the first-order partial derivatives) of Φ with respect to the parameters w.
Note that parameters are adjusted in response to errors in hitting the target, yk- Φ (xk, wτ-1).
The performance of backpropagation learning can be greatly influenced by the choice of η.
Note that (5) is the parameter update equation of the on-line, rather than the batch version of
the backpropagation learning algorithm. For very small η (i.e. approaching zero) on-line
backpropagation learning approaches batch backpropagation (Finnoff 1993). But there is a
non-negligible stochastic element [i.e. (xk, yk) are drawn at random] in the training process that

9

gives on-line backpropagation a quasi-annealing character in which the cumulative gradient is
continuously perturbed, allowing the search to escape local minima with small and shallow
basins of attraction (Hassoun 1995). Although many modifications of this procedure [notably
the introduction of a momentum term, µ ∆wτ-1, into the weight update equation and the use of
a variable step size, denoted ητ-1] and alternative optimization procedures have been suggested
over the past few years, experience shows that surprising good network performance can often
be achieved with this on-line (local) learning algorithm in real-world applications [see, e.g.,
Fischer et al. 1997 for an epoch-based version].

As the optimum network size and topology [i.e. the number of hidden layers and hidden units,
connectivity] are usually unknown, the search of this optimum requires a lot of networks to be
trained on a trial and error basis. Moreover, there is no guarantee that the network obtained is
globally optimal. In this contribution, we view this issue as a global optimization problem and,
therefore, suggest the application of genetic algorithms which provides multi-point global
optimal search for the network topology.

3. Basics of the Canonical Genetic Algorithm

Genetic algorithms (GAs) are revealing to be a very rich class of stochastic search algorithms
inspired by evolution. These techniques are population oriented and use selection and
recombination operators to generate new sample points in a search space. This is in contrast to
standard programming procedures that usually follow just one trajectory (deterministic or
stochastic), perhaps repeated many times until a satisfactory solution is reached. In the GA
approach, multiple stochastic solution trajectories proceed simultaneously, permitting various
interactions among them towards one or more regions of the search space. Compared with
single-trajectory methods, such as simulated annealing, a GA is intrinsically parallel and global.
Local ‘fitness’ information from different members is mixed through various genetic operators,
especially the crossover mechanism, and probabilistic soft decisions are made concerning
removal and reproduction of existing members. In addition, GAs require only simple
computations, such as additions, random number generations, and logical comparisons, with
the only major burden that a large number of fitness function evaluations have to be performed
(Qi and Palmieri 1994). This section will review the fundamentals of the canonical genetic
algorithm as introduced by Holland (1975), and then show how genetic algorithms can be used
as means to perform the task of model choice [topology optimization] in the spatial interaction
arena.

In its simplest form, the canonical genetic algorithm is used to tackle static discrete
optimization problems of the following form:

10

max {f (s) | s ∈ Ω} (6)

assuming that 0<f (s)<∞ for all s∈Ω={0, 1}d and f (s) ≠ const. In this case, the objective
function is called the fitness function f: Ω→ ℜ , and the d-dimensional binary vectors in Ω are
called strings [sometimes also genotypes or chromosomes]. The size of the search space Ω is
2d and forms a hypercube. The GA samples the corners of this d-dimensional hypercube. The
P-tuple of individual strings (s1, ..., sP) is said to be a population S. Each individual sk ∈ S
represents a feasible solution of problem (6) and its objective function value f(sk) is said to be
its fitness which is to be maximized. f is called the fitness function. If the problem is to
minimize a given objective function g

min {g(x) | x ∈ Σ} (7)

assuming that 0<g(x)<∞ for all x ∈ Σ ⊂ ℜ d and g(x) ≠ const, then it is necessary first, to map
the ‘real’ search space Σ into the representation space Ω of binary [fixed-length] strings, and,
second, to transform the objective function g(x) into an appropriate fitness function f (s) such
that the maximizers of f (s) correspond to the minimizers of x. This situation is schematically
illustrated in Fig. 2.

Search
Space

Σ

GA
Search Space

Ω

Local/Global
Minima

Highly Fit Strings

Genetic Algorithm
max f (s)

Optimization Problem
min g(x)

Decoding Function

Encoding Function

Fig. 2 The dual representation scheme used in the GA-approach [see Hassoun 1995]

The standard genetic algorithm can be sketched as follows:

Step 1: Randomly generate an initial population of, say, P binary strings of length d: S(0)={s1,
..., sP} ⊂ Ω .

11

Step 2: Compute the fitness score f(sk) of each individual string sk of the current population
S(t).

Step 3: Generate an intermediate population [termed mating pool] by applying the selection
operator.

Step 4: Generate S(t+1) by applying recombination operators (crossover and mutation) to the
intermediate population.

Step 5: t:=t+1 and continue with Step 2 until some stopping criterion applies [in this case
designate the best-so-far individual as the result of the GA].

The first step generates an initial population S(0), i.e. S(0)={s1, ..., sP}⊂ Ω . In the canonical
GA each member of S(0) is a binary string of length d that corresponds to the problem coding.
S(0) is usually generated randomly, because it is not known a priori where the globally optimal
strings in Ω are likely to be found. From this initial population, subsequent populations
S(1), ..., S(t), ... will be computed by employing the three genetic operators of selection
(reproduction), crossover and mutation.

After calculating the relative fitness for all the strings in the current population S(t) (Step 2),
selection is carried out. In the canonical GA the roulette wheel selection (Goldberg 1989)
technique is used for constructing the intermediate population (Step 3), i.e. a proportional
selection technique, where the intermediate population is determined by P independent random
experiments. The probability that individual sk is selected from tuple (s1, ..., sP) to be member
of the intermediate population at each experiment is given by

pr (sk is selected) =

f (sk) / f (sk
k =1

P

∑)

 > 0 (8)

That is, strings in the current population are copied (i.e. duplicated) and placed in the
intermediate population proportional to their fitness relative to other individuals in the
population.

After selection has been carried out the construction of the intermediate population is
complete. Then crossover and mutation are applied to the intermediate population to create the
next population S(t+1) (Step 4). Crossover and mutation provide a means of generating new
sample points in Ω while partially preserving distribution of strings across hyperplanes which is
observed in the intermediate population. Crossover is a recombination mechanism to explore
new regions in Ω . The crossover operator is applied with some probability pc ∈ [0, 1]. To
apply the one-point crossover operator, for example, the individuals of the intermediate
population are randomly paired. Each pair (parents) is then combined, choosing one point in
accordance with a uniformly distributed probability over the length of the individual strings and
cutting them in two parts accordingly. The two new strings, called offspring, are formed by the
juxtaposition of the first part of one parent and the last part of the other parent. For example,

12

Fig. 3 illustrates a crossover for two 7-bit strings. In this case, the crossing site is 5, so the bits
from the two strings are swapped after the fifth bit. It should be noted that we can also
perform multi-point crossover (Spears and De Jong 1991) and uniform crossover (Syswerda
1989) for evolution.

(a) (b) (c)

0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0

Fig. 3 An example of a one-point crossover for 7-bit strings: (a) two strings selected for
crossover, (b) a crossover site is selected at random, (c) the two strings are swapped
after the 5th bit

Finally, after crossover, the mutation operator is applied with uniform probability pm. The
operation is a stochastic bit-wise complementation and serves the important, but secondary
role of ensuring that the entire representation space Ω remains accessible. Mutation may be
applied to offspring produced by crossover or, as an independent operator, at random to any
individual in the intermediate population. It operates independently on each individual by
probabilistically perturbing each bit string. The event that the i-th bit of the k-th individual is
flipped from 0 to 1 or from 1 to 0 is stochastically independent and occurs with probibility pm

∈ [0, 1]. As an example, assume pm=0.1, and the string 0101101 is to undergo mutation. The
easiest way to determine which bits, if any, to flip is to select a uniform random number r ∈ [0,
1] for each bit in the string. If r = pm = 0.1, then the bit is flipped, otherwise not. Suppose that
the random numbers (0.30, 0.91, 0.05, 0.54, 0.48, 0.89, 0.17) were generated for the string in
question, then the third bit has to be flipped and the resulting string is 0111101. After
mutation, the candidate strings are copied into the new population S(t+1) of strings, and the
whole process is repeated by decoding each individual into a form appropriate for evaluation,
calculating its fitness, using a roulette wheel method of selection, and applying the operators of
crossover and mutation.

It is important to note that as the average evaluation of the strings in the population increases,
the variance in fitness decreases in the population. After some generations there may be little
difference between the best and worst individual in the population, and the selective pressure
based on fitness is correspondingly reduced. This problem can be partially addressed by using
some form of fitness scaling (Goldberg 1989). In the simplest case, one can subtract the
evaluation of the worst string in the population from the evaluations of all strings in the
population. One can now calculate the average stringe evaluation as well as fitness values
using this adjusted evaluation. This will increase the resulting selective pressure.

13

Initial Population of Strings
[search space Ω]

(representing spatial interaction
models with three inputs and a single

output)

Current Population of Strings

Decoding Each String into an
untrained neural network model

[search space Σ]
Backpropagation Training & Testing

Neural Network Performance
Evaluation

and
Encoding into Strings

Selection

Crossover
and

Mutation

Fig. 4 The principle structure of a genetic approach for the neural network topology
optimization problem

The general idea to use the GA to select a topology (pattern of connections) for the neural
spatial interaction models is illustrated in Fig. 4. This approach is inherently computationally
demanding because the complete conventional training phase (itself computationally intensive)
is required to simply evaluate the fitness of a string [i.e. a neural network topology]. But the
approach remains reasonably attractive despite this because of the scarcity of fully automated
alternative procedures for optimally selecting the network topology. It is especially useful and
effective when one needs to find the optimal topology of a highly complex neural network
which cannot be assumed by the trial-and-error or heuristic procedures.

14

While the procedure outlined in Fig. 4 is quite straightforward, the problem of combining GA
and neural spatial interaction modelling, however, lies in the definitions of an invertible
transformation to encode/decode the original search space Σ into some GA-space Ω , and of
the fitness evaluation function. These are the two main components of most genetic algorithms
that are problem dependent.

In principle, three major types of direct encoding strategies may be used: weight-based, node-
based, layer-based and pathway-based strategies [opposed to indirect encoding where rules or
alikes are encoded that carry information on how the CNN has to be constructed]. Node-based
strategies do not encode the network weights, but node information such as the number of
nodes, connectivity and placement information of the nodes, and the type of transfer functions
are encoded. In layer-based encoding schemes the layer size and information about output and
input connections are stored inter alia, while in pathway-based encoding, pathways through the
network are encoded but not the connections, nodes or layers. It is important to note that the
search space Ω [space of strings or representation space] is enormously enlarged if the genetic
representation of CNNs distinguishes between networks which differ only by the labelling of
hidden units. This problem is known as permutational redundancy associated with the
arbitrariness of labels of topologically equivalent hidden nodes, and tends to make genetic
navigation very difficult since GAs are sensitive to the potential for redundant representations
(Radcliff 1991). Aside from the coding issue, the definition of the fitness function has to be
given as part of the problem definition. The fitness function may be defined as a combined
measure (=overall performance) which may take into account learning speed, accuracy in terms
of out-of-sample (testing) performance and factors such as the size and complexity of the
model.

The process of training individual neural network models, measuring their fitness, and applying
genetic operators to produce a new population of neural network models is repeated over
many generations. Each generation should tend to contain more of the features which were
found useful in the previous generation, and an improvement in overall performance can be
realized over the previous generation.

The next section serves to discuss the major issues involved in using genetic algorithms for
neural network topology optimization. These include the representation of the strings that
specifies both the structure and the estimation procedure, the choice of the underlying space Σ
of neural network topologies for exploration, adaptations of the basic genetic operators used
to construct meaningful neural spatial interaction structures, and the form of the evaluation
function which determines the fitness of a neural network.

15

4. GENNET: A System for Structure Optimization and Weight
Determination

This section describes the evolutionary algorithm on which the GENNET system is based (Leung

et al., 1995). The system essentially consists of two major modules: a Genetic Algorithm Engine

used for designing the topology [structure optimization] and a Network Simulator for gradient-

based backpropagation learning and testing. Both modules are interwoven via a Network Decoder

and a Network Fitness Evaluator (see Fig. 5). Basically, the Genetic Algorithm Engine encodes

neural network topologies as strings and evolves them through genetic operators. The evolved

string is then decoded into a neural network by the Network Decoder (generator) and is then fed

to the neural network engine for training. Based on the given training patterns, the engine trains

the given neural networks by error backpropagation of gradient descents, and the resulting

networks are then tested with the given testing patterns. Various statistics such as the size of the

network, learning speed, in-sample and out-of-sample performance are recorded and passed back

to the genetic algorithm engine for fitness evaluation. Networks with high fitness are selected and

further processed by various genetic operators. The whole process is repeated until a network

with fitness value higher than the specified requirement is found.

Mutation &
Crossover Mating Pool Selection

Network
Decoder

Network
Fitness

Evaluator

Network
Trainer

Network
Tester

Training Patterns Testing Patterns

Genetic Algorithm Engine

Computational
Neural Network Simulator

Fig. 5 GENNET: A hybrid approach for optimizing the structure and the weights of
multilayer computational neural networks

16

In the sequel, we detail the structure and the mechanism of the GA-based system. The
utilization of genetic algorithms in any specific application entails three related activities: first,
the definition of an objective function which indicates the fitness of any potential solution,
second, the definition of the encoding structure, and third, the definition of the genetic
operators to be used.

Fitness Function: In GENNET, optimal network design corresponds to the global minimum
of a fitness function. The fitness function is defined to depend on three factors. The main factor
used for the fitness function is the network’s ability to generalize unseen patterns, i.e. the
generalization or out-of-sample performance measured in terms of the average relative
variance. For this purpose, we used a validation test set in comparison to the training set. To
create a selective pressure that favours smaller networks, a parameter reflecting the network
complexity (in terms of the number of hidden layers and the number of their nodes) is also
included in the fitness function. Finally, the number of cycles required to train the network [i.e.
the speed of convergence] in comparison to the maximum number of cycles utilized so far is
taken into consideration, even though this parameter is not directly associated with neural
network topology. This leads to the following fitness function

Fitness = 1 - r1 TestF -r2 NCF - r3 TrainF (9)

where TestF represents the generalization performance, NCF the network complexity and
TrainF the speed of convergence. r1, r2 and r3 are scaling factors between zero and one. They
may be interpreted as penalty coefficients and have to be carefully adjusted.

Although the fitness function in (9) is relatively simple, its values depend on several ‘hidden’
factors which are not directly associated with network topology. For example, evaluating a
given network simply on learning results and validation tests has several drawbacks. For
example, using a small number of samples in both phases speeds up the optimization process
but may result in removing connections too forcefully since the limited number of
measurements might not provide enough evidence to justify the importance of some links. On
the other hand, using a larger quantity of data to evaluate the CNN may imply that bigger
networks could be trained more precisely than smaller ones and, thus, the implicit pruning
process would be reluctant to remove links.

Encoding Scheme: Table 1 illustrates how a string is built. The string representation has
several desirable properties. Since all bits are treated uniformly, all genetic operators designed
for binary strings can then be applied without modification. The string can be used to encode
any initial network architecture. Neural spatial interaction models of class (2) are encoded as a
68-bit string. The following string

17

 1 2 3 4 5 6

12345678901234567890123456789012345678901234567890123456789012345678

10111100000000000000000100100111010101010001000000000001000000000001

represents a neural spatial interaction model with a single hidden layer of 30 units [i.e. total

number of hidden layers: 1, number of nodes in the hidden layer: 30, connectivity: 1]. Its detailed

decoding is as follows:

bit 1 2-7 8 9-14 15 16-21 22-24 25-27 28-30 31-40 41-68

binary 1 011110 0 000000 0 0000000 001 001 001 1101010101 0001000000000001000000000001

decimal 1 30 0 0 0 0 1 1 1 853 16781313

upper weight limit = 1
7

 . (range of weight limit)

lower weight limit = 1
7

 . (range of weight limit)

momentum limit = 1
7

 . (range of momentum limit)

probability of connection of each layer = 852
210 − 1 = 853

1023
= 0.8338

sigmoid variable = 16781313/228-1)

= 16781313/268435455*(range of λ)

Table 1 Genetic-algorithm encoding of a multilayer neural network spatial interaction model
Bits Meaning

1
2-7

Present flag* of the first hidden layer
Density parameter: number of nodes in the first hidden layer

8
9-14

Present flag* of the second hidden layer
Density parameter: number of nodes in the second hidden layer

15
16-21

Present flag* of the third hidden layer
Density parameter: number of nodes in the third hidden layer

22-24
25-27
28-30

determine upper connection weight limit (has 8 discrete levels)
determine lower connection weight limit (has 8 discrete levels)
momentum limit (has 8 discrete levels)

31-40
41-68

probability of connection of each layer
sigmoid slope (λ) of the logistic function

*) The flag is used to indicate whether the hidden layer exists or not; 1: present and 0: absent

18

Operators: The Genetic Algorithm Engine employs the three genetic operators as described

in section 3. For selection, the standard roulette wheel selection operator, with Monte Carlo

selection with probabilities based on fitness level is used. Strings with higher fitness values

have a higher chance to be selected for reproduction. For crossover, a random crossover point

which is a number between 1 and 67 [string length minus 1] is selected as the position for

crossover. For mutation, the standard operator which negates a bit with probability pm is

utilized. Having initialized the evolutionary process with a randomly generated population of

strings, the genetic algorithm engine then applies the three genetic operators for reproduction.

All strings generated by the genetic algorithm engine are decoded as neural networks by the

Network Decoder (generator). At the initialization of the system, the network decoder is

initialized with the following information: maximum number of hidden layers [in the current

study: up to one hidden layer], minimum and maximum number of nodes in each layer, lower

and upper bounds of the weights. Based on the information, the network decoder converts the

string into a multilayer neural network. Each weight of the connections is initialized with a

random value between the lower and upper bounds of the weights. The decoded network is fed

to the network trainer for backpropagation training.

The Network Trainer is responsible for the training of the neural network by backpropagating

gradient descent errors and using the training set, provided until any one of the following

conditions is fulfilled: number of maximum training cycles is reached, mean squared error [i.e.

the error function to be minimized during training] is smaller than the desired value, or the

mean error improvement with a cycle period is converged. When the training is completed, the

network trainer outputs a fitness value: Training Fitness (TrainF), a value within (0, 1) which

corresponds to how well the neural network is trained [measured in terms of the error function

in (3)]. We assume that the smaller the mean squared error, the greater is the TrainF.

The Network Tester is responsible for the testing of the trained network using the testing

validation set provided. When the testing is finished, the out-of-sample performance or Testing

Fitness (TestF), which is a value within (0, 1), is obtained. TestF, which is monitored by the

Network Tester, is measured in terms of the average relative performance (ARV) defined by

Fischer and Gopal (1994) as

19

ARV =
y l − Φ L (x l , w)

2

l∑
y l − y

2

l∑
 (10)

where (xl, yl) denotes the l-th testing pattern, y the average of the target values yl in the
testing data set, and Φ L (xl, w) the actual model output. This performance measure provides a
normalized mean squared error metric for comparing the generalization performance of
different CNN models.

The tested network is then evaluated by the Network Fitness Evaluator that is responsible for

the evaluation of the overall fitness of the neural network. Network Fitness (NF) is based on

the Network Complexity Fitness (NCF) [defined as size of the network/maximum possible

size], Training Fitness (TrainF), and Testing Fitness (TestF), and is defined as

NF = rTestF TestF + rNCF NCF + rTrainF TrainF (11)

where rTestF, rNCF, and rTrainF are constants which reflect the degrees of significance of NCF,

TrainF, and TestF respectively. Adjusting the value of rTestF, rNCF,, and rTrainF is crucial because

the system uses these values as a basis to evolve neural networks of various topologies.

The trained networks are then fed to the GA engine for evolution, especially on the adjustment
of the various weights in NF, momentum, probability of connection, and the parameter λ of the
logistic function. It should be noted that the relationship between fitness in (9) and NF in (11)
of strings [i.e. between the GA-search space Ω and the search space Σ of CNN topologies is
given by

fitness = 1 - NF. (12)

5. Experiments and Performance Tests Using Interregional
Telecommunication Traffic Data

Fischer and Gopal (1994) have demonstrated the feasibility of the class of neural spatial
interaction models Φ L to model interregional telecommunication traffic in Austria with noisy
real-world data of limited record length. Even though the model identified in this study well
outperformed current best practice in form of the classical regression approach of the gravity
type, the model selection approach utilized, due to its trial-and-error heuristics, might have
considered only restricted subsets of the whole space of CNN topologies. Thus, it is obvious to

20

test and evaluate the suggested approach in this spatial interaction context. To facilitate
comparison with the previous work, we considered the same class of neural interaction models
with three inputs, a single hidden layer, and a single output unit that represents the intensity of
telecommunication flows from one origin region to a destination region. The input units
represent the three independent variables of the classical gravity model [i.e. the potential pool
of telecommunication activities in the origin region, the potential draw of telecommunication
activities in the destination region, and a factor representing the inhibiting effect of geographic
separation from the origin to the destination region]. The problem is to identify a model
specification with an appropriate complexity in terms of the hidden units to show good
generalization [i.e. out-of-sample] performance.

The Data: From three Austrian data sources - a (32, 32)-interregional telecommunication flow
matrix, a (32, 32)-distance matrix, and gross regional products for the 32 telecommunication
regions - a set of 992 4-tuples (x1, x2, x3, y) was constructed, where the first three components
represent the input vector x:=(x1, x2, x3) and the last component the target output of the CNN
model, i.e. the telecommunication intensity from one region of origin to another region of
destination. Input and target output signals were preprocessed to logarithmically transformed
data scaled into [0, 1]. The telecommunication data stem from network measurements of
carried telecommunication traffic in Austria 1991, in terms of erlang, which is defined as the
number of phone calls (including facsimile transmissions) multiplied by the average length of
the call (transfer) divided by the duration of measurement (for more details see Fischer and
Gopal 1994). This data set was randomly divided into two separate subsets: about two thirds
of the data were used for parameter estimation only, and one third as validation test set. There
was no overlapping of the two sets of data.

Results: A first set of tests was run in order to identify an optimal parameter setting. The
genetic algorithm has 4 parameters and there is no way to a priori identify useful combinations
of values. The parameters are: P, the size of the population; pc, crossover probability; pm,
mutation probability; and λ, slope of the logistic transfer function (see equation (2)). In order
to define good settings, extensive computational tests with different combinations of values
have been performed. All tests were made by letting the algorithm run five times at each setting
for 500 function evaluations. The values used for each parameter were: P ∈ {20, 40, 100,
200}; pc = {0.5, 0.6, 0.7, 0.8, 0.9}; pm = {0.001, 0.01, 0.01, 0.1, 0.2}; λ = {0.1, 0.5, 1, 2, 10}.
The best settings obtained are summarized in Table 2. Some considerations are in order. First,
larger populations provide better results, because a large population is more likely to contain
representatives from a larger number of hyperplanes. Thus, the GAs can perform a more
informed search. But the computational costs of evolving large populations does not seem to
be rewarded by comparable improvement of the solutions obtained by, for P>40. Second, there
is evidence that, within the representation used, the search process benefits from the
recombination. Crossover probability equals to the commonly adopted values suggested, for

21

example, by De Jong (1975), i.e. pc=0.6. If the crossover probabilities are too high, high
performance structures are discarded faster than selection can produce improvements. If the
probability is too low, the search may stagnate due to the lower exploration rate. Third,
mutation is a secondary search operator that increases the variability of the population. The
mutation probability is small (pm=0.001), suggesting a larger disruptive impact of the mutations
it controls. Fourth, the sigmoid slope is a parameter that dramatically affects the results. The
best slope value, i.e. λ=2, corresponds to a steeper sigmoid. The experiments also suggest that
in smaller populations such as P=40 structures, good performance is associated with either a
higher crossover probability combined with a low mutation probability or a lower crossover
combined with a higher mutation probability.

Table 2 Best parameter settings
Parameter Values

P 40

pc 0.6

pm 0.001

λ 2

η [learning rate] 0.7

µ [momentum] 0.9

Table 3 reports the generalization [out-of-sample] performance [in terms of ARV] along with
the network complexity [j=26 and J=36] of the CNNs evolved over the five trials. Again some
considerations are worth making. First, compared with the results obtained in Fischer and
Gopal (1994) the solutions show a higher variance over the five runs. Sometimes, it moves
steadily (though slowly) towards the optimum, sometimes it never greatly modifies the initial
fitness, which is close to the half of the optimum. Second, the average performance in terms of
ARV obtained over the five runs utilizing the validation test patterns is 0.3948 in the case of
the less complex network model (J=26) and 0.3879 in the case of the more complex model
(J=30). Third, for comparative purposes it is worthwhile to mention that the cross-validation
approach utilized in Fischer and Gopal (1994) did result in a model with J=30 hidden units and
an ARV value of 0.4065 on the test rather than on the validation set averaged over five trials
differing in initial conditions as well as in the random sequence of the input signals. But it
should be noted that the ARV values are not comparable in a strict sense, because Fischer and
Gopal (1994) utilize an additional set of test data, independent from both the training and the
validation test sets. The test data set is reserved for the training process, the validation test set
for optimizing model complexity [i.e. model choice] and the test set for the evaluation.

22

Table 3 Performance of the GA solutions [measured in terms of ARV]
using the validation test set

Neural Spatial Interaction Model with
J=26

Average Relative Variances
J=30

Average Relative Variances
Run 1 0.588735 0.554846
Run 2 0.306277 0.295533
Run 3 0.294214 0.275657
Run 4 0.417048 0.421113
Run 5 0.367715 0.392486
Average 0.394798 0.387927
Deviation Standard 0.119157 0.111943

The best network model should be a compromise between complexity and performance. In the
suggested GA model choice approach, the balance between complexity and performance can
be regulated at the level of the fitness function. This is an attractive feature. But care has to be
exercised when setting the r-values since the network performance depends also on other
‘hidden’ aspects of the optimization problem, such as the number of training and validation
points in addition to the overall training strategy.

6. Conclusions and Outlook

This paper presents an evolutionary computational approach, called GENNET, suitable for

maximizing complex functions, such as those that assign a fitness to a multilayer computational

neural network on the basis of its topology, its training performance and convergence speed.

Search effectiveness is achieved through a direct encoding procedure that allows CNN

topologies to be represented by 68-bits strings, and an algorithm that automatically identifies

minimal search space containing reachable solutions at evolution time. The genetic algorithm

permits search over the whole search space of CNN topologies, thus, providing the possibility

of escaping from local minima. Local search is performed by applying backpropagation

learning to the individuals of the GA-population. Interregional telecommunication traffic data

from Austria (Fischer and Gopal 1994) serve as a benchmark for evaluating and illustrating the

performance of the hybrid aproach where the objective is to generate a three inputs, single

output, and single hidden layer computational neural network with logistic hidden units.

23

As was shown in the simulation studies, GENNET successfully generates an optimal topology

for the neural network spatial interaction model without manual intervention required by other

heuristic approaches to the model choice problem. Though the computational costs tend to be

higher, it is, in fact cost effective if time spent on human supervision and intervention in the

other approaches is taken into account. The benefit will be even more apparent when complex

network topologies more complex than that in this study have to be evolved.

We believe that GENNET may be made substantially more efficient, for example, by using

floating-point rather than binary representations (see Michalewicz 1992). But there is little

doubt that it will remain slower in any serial implementation. The greatest potential for the

application of this and other types of evolutionary optimization to real world problems will

come from their implementation on parallel machines, because evolution is an inherently

parallel process. While the evolutionary process itself is slow, the CNN it generates is evolved

to be computationally efficient in the sense of producing the best approximation using the

fewest computational units, provided the system parameters used in the experiments are

optimal for the given problem.

Finally, we should mention that there are several other population based algorithms that are

either spinoffs of the canonical genetic algorithm, or independently developed. Evolution

strategies and evolutionary programming, for example, are two computational paradigms that

use a population based search. Evolutionary programming (see Fogel 1995), in particular,

appears to be an attractive alternative to genetic algorithms since it provides the possibility to

manipulate CNNs directly and, thus, obviates the need for a dual representation. We leave

comparisons between evolutionary programming and genetic algorithms on the problem

addressed in this paper for future research.

Acknowledgement:The authors would like to thank K.S. Leung, W. Ng, M.K. Lau and S.K. Cheung for their
assistance in implementation; and the Hong Kong Research Grant Council for the support through the
earmarked grant CUHK 321/95H.

24

References

Bishop C M (1995) Neural networks for pattern recognition. Clarendon Press, Oxford

Caudele T P, Dolan C P (1989) Parametric connectivity: Training of constrained networks
using genetic algorithms In: Schaffer J D (ed) Proceedings of the Third International
Conference on Genetic Algorithms and their Applications, 370-4. Morgan Kaufmann,
San Mateo (CA)

De Jong K A (1975) Analysis of the behavior of a class of genetic adaptive systems. Ph.D.
dissertation, University of Michigan

Finnoff W (1993) Diffusion approximations for the constant learning rate backpropagation
algorithm and resistance to local minima In: Hanson S J, Cowan J D, Giles C L (eds)
Advances in Neural Information Processing Systems V, 459-66 Morgan Kaufmann, San
Mateo (CA)

Fischer M M (1997) Computational neural networks. A new paradigm for spatial analysis
Enivronment and Planning A [in press]

Fischer M M, Gopal S (1994) Artificial neural networks A new approach to modelling
interregional telecommunication flow Journal of Regional Science 34(4), 503-27

Fischer M M, Gopal S, Staufer P, Steinnocher K (1997) Evaluation of neural pattern classifiers
for a remote sensing application Geographical Systems 4 [in press]

Fogel D B (1994) An introduction to simulated evolutionary optimization IEEE Transaction
on Neural Networks 5(1), 3-14

Fogel D B (1995) Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence IEEE Press, Piscataway (NJ)

Goldberg D (1989) Genetic Algorithms Addison-Wesley, Reading (MA)

Gopal S, Fischer M M (1996) Learning in single hidden-layer feedforward network models
Geographical Analysis 28(1), 38-55

Grefenstette, J J (1986) Optimization of control parameters for genetic algorithms IEEE
Transactions on Systems, Man and Cybernetics SMC 16, 122-8

Hassoun M H (1995) Fundamentals of Artificial Neural Networks The MIT Press, Cambridge,
MA and London (England)

Hinton G E (1990) Connectionist learning procedures In: Kodratoff Y, Michalski, R (eds)
Machine Learning III, 555-610 Morgan Kaufmann, San Mateo (CA)

Holland J H (1975) Adaptation in Natural and Artificial Systems The University of Michigan
Press, Ann Arbor (Michigan)

Hornik K M, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal
approximators Neural Networks 2, 359-66

Koza J R (1993) Genetic Programming The MIT Press, Cambridge (MA) and London
(England)

25

Leung Y (1994) Inference with spatial knowledge: An artificial neural network approach
Geographical Systems 1(2), 103-121

Leung Y (1997) Feedforward neural network models for spatial pattern classification In:
Fischer, M M and Getis, A (eds) Recent Developments in Spatial Analysis: Spatial
Statistics, Behavioural Modelling and Computational Intelligence, 336-59, Springer,
Berlin

Leung Y, Leung K S, Ng W, Lau M I (1995) Evolving multilayer feedforward neural networks
by genetic algorithms (unpublished paper)

Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural
networks IEEE Transactions on Neural Networks 5(1), 39-53

Michalewicz Z (1992) Genetic Algorithms + Data Structures = Evolution Programs Springer,
New York

Miller G F, Todd P M, Hedge S U (1989) Designing neural networks using genetic algorithms
In: Schaffer, J D (ed) Proceedings of the Third International Conference on Genetic
Algorithms and their Applications pp. 379-84 Morgan Kaufmann, San Mateo (CA)

Montana D J, Davis L (1989) Training feedforward networks using genetic algorithms In:
Sridhara, N S (ed) Eleventh International Joint Conference on Artificial Intelligence, pp
762-7 Morgan Kaufmann, San Mateo (CA)

Moody J (1992) Generalization, weight decay and architecture selection for non-linear learning
systems In: Moody J, Hanson J, Lippmann R (eds) Advances in Neural Information
Processing Systems IV, 471-9 Morgan Kaufmann, San Mateo (CA)

Nijkamp P, Reggiani A, Tritapepe T (1996) Modelling an inter-urban flows in Italy: a
comparison between neural network approach and logit analysis Transportation
Research C 4(6), 323-38

Openshaw S (1988) Building an automated modelling system to explore a universe of spatial
interaction models Geographical Analysis 20(1), 31-46

Openshaw S (1993) Modelling spatial interaction using neural net In: Fischer M M, Nijakmp P
(eds) Geographical Information Systems, Spatial Modelling, and Policy Evaluation, pp.
147-64, Springer, Berlin

Openshaw S (1997) Neural network, genetic, and fuzzy logic models of spatial interaction,
Paper submitted to Envirnoment and Planning A

Openshaw S, Openshaw C (1997) Artificial intelligence in geography Wiley, Chichester New
York

Qi X, Palmieri F (1994) Theoretical analysis of evolutionary algorithms with an infinite
population size in continuous space Part I: Basic properties of selection and mutation
IEEE Transactions on Neural Networks 5(1), 102-19

Radcliffe N J (1991) Genetic set recombination and its application to neural network topology
optimisation, EPCC Technical Report EPCC-TR-91-21, Edinburgh Parallel Computing
Centre, University of Edinburgh

Rumelhart D E, Hinton G E, Williams R J (1986) Learning internal representations by error

26

propagation In: Rumelhart D E, McClelland J L, The PDP Research Group (eds)
Parallel Distributed Processing: Explorations in the Microstructure of Cognitions,
Volume 1: Foundations, pp. 318-62 The MIT Press, Cambridge (MA)

Schaffer J D, Caruana, R A, Eshelman L J, Das R (1989) A study of control parameters
affecting online performance of genetic algorithms for function optimization In: Schaffer
J D (ed.) Proceedings of the Third International Conference on Genetic Algorithms and
their Applications, pp. 51-60 Morgan Kaufmann, San Mateo (CA)

Spears M M, De Jong K A (1991) An analysis of multi-point crossover In: Rawlins G J E (ed)
Foundations of genetic algorithms, pp. 301-315 Morgan Kaufmann, San Mateo (CA)

Syswerda G (1989) Uniform crossover in genetic algorithms In: Schaffer J D (ed) Proceedings
of the Third International Conference on genetic algorithms, pp. 2-8 Morgan
Kaufmann, San Mateo (CA)

White H (1989) Learning in artificial neural networks: A statistical perspective Neural
Computation 1, 425-64

Whitley D, Hanson T (1989) Optimizing neural networks using faster, more accurate genetic
search In: Schaffer, J D (ed) Proceedings of the Third International Conference on
Genetic Algorithms (Arlington, 1989), 391-6 Morgan Kaufmann, San Mateo (CA)

Yao X (1993) A review of evolutionary artificial neural networks International Journal of
Intelligent Systems 8(4), 539-67

